Grade 7/8 Math Circles
 November 6/7/8/9 Geometric Sequences Solutions

Exercise Solutions

We will provide solutions to select exercises from the handout.
2. $3^{4}=81,2^{6}=64,\left(\frac{1}{2}\right)=\frac{1}{8}$.
3. $t_{2}=4, t_{5}=32, t_{8}=256$.
4. (a) Geometric, $r=2$.
(b) Not geometric.
(c) Not geometric.
(d) Geometric, $r=3$
(e) Geometric, $r=\frac{1}{2}$
6. $a=2, r=3, n=4$. Of course, this series would be easy to add without the formula, but it's worth seeing.

$$
2+6+18+54=2 \times\left(1-3^{4}\right) \div(1-3)=2 \times(1-81) \div(-2)=2 \times(-80) \div(-2)=80
$$

Problem Set Solutions

1. We will denote the common ratio of a geometric sequence r, and the common difference of an arithmetic sequence d.
(a) Arithmetic, $d=5$
(b) Geometric, $r=4$
(c) Arithmetic, $d=-3$
(d) Neither
(e) Geometric, $r=1$
(f) Neither
2. (a) 75
(b) 341
(c) -15
(d) 13
(e) 10
(f) 17
3. $\{5,-10,20,-40,80\}$
$\{5,3,1,-1,-3\}$
4. Since we know that the sequence is geometric, there is a common ratio. Notice that to go from 6 to 12 , we multiply by 2 , and to go from 12 to 24 , we again multiply by 2 , so we can see that the common ratio is $r=2$. Hence $a=\frac{3}{2} \times 2=3$ and $b=24 \times 2=48$.
5. (a) $a=\frac{4}{2}, r=\frac{3}{4}, n=4$

$$
\frac{4}{2} \times\left(1-\left(\frac{3}{4}\right)^{4}\right) \div\left(1-\frac{3}{4}\right)=\frac{4}{2} \times\left(1-\frac{81}{256}\right) \div \frac{1}{4}=\frac{175}{32}
$$

(b) $a=4, r=\frac{1}{2}, n$ is arbitrarily large.

$$
4 \times\left(1-\left(\frac{1}{2}\right)^{n}\right) \div\left(1-\frac{1}{2}\right)=4 \times(1-0) \div \frac{1}{2}=8
$$

(c) $a=-1, r=-3, n=5$

$$
(-1) \times\left(1-(-3)^{5}\right) \div(1-(-3))=(-1) \times(1-(-243)) \div(4)=-61
$$

(d) $a=\frac{1}{3}, r=\frac{1}{3}, n$ is arbitrarily large.

$$
\frac{1}{3} \times\left(1-\left(\frac{1}{3}\right)^{n}\right) \div\left(1-\frac{1}{3}\right)=\frac{1}{3} \times(1-0) \div \frac{2}{3}=\frac{1}{2}
$$

6. (a) We can write

$$
\frac{1}{3}=0 . \dot{3}=0.3+0.03+0.003+0.0003+\cdots
$$

(b) $a=0.3, r=0.1$, and n is is arbitrarily large.
(c)

$$
0.3 \times\left(1-0.1^{n}\right) \div(1-0.1)=0.3 \times(1-0) \div(0.9)=\frac{1}{3}
$$

as expected.

